Let m ≥ 2 be an integer. For any open domain Ω ⊂ R2m, non-positive function φ ∈ C∞(Ω) such that ∆mφ ≡ 0, and bounded sequence (Vk) ⊂ L∞(Ω) we prove the existence of a sequence of functions (uk) ⊂ C2m−1(Ω) solving the Liouville equation of order 2m Z (−∆)muk = Vke2muk in Ω, lim sup e2muk dx < ∞, k→∞ Ω andblowingupexactlyonthesetSφ :={x∈Ω:φ(x)=0},i.e. lim uk(x)=+∞forx∈Sφ and lim uk(x)=−∞forx∈ΩSφ, k→∞ k→∞ thus showing that a result of Adimurthi, Robert and Struwe is sharp. We extend this 2m result to the boundary of Ω and to the case Ω = R open. . Several related problems remain

Large blow-up sets for the prescribed Q -curvature equation in the Euclidean space / Hyder, Ali; Iula, Stefano; Martinazzi, Luca. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - 20:2(2018), p. 1750026. [10.1142/S0219199717500262]

Large blow-up sets for the prescribed Q -curvature equation in the Euclidean space

Martinazzi, Luca
2018

Abstract

Let m ≥ 2 be an integer. For any open domain Ω ⊂ R2m, non-positive function φ ∈ C∞(Ω) such that ∆mφ ≡ 0, and bounded sequence (Vk) ⊂ L∞(Ω) we prove the existence of a sequence of functions (uk) ⊂ C2m−1(Ω) solving the Liouville equation of order 2m Z (−∆)muk = Vke2muk in Ω, lim sup e2muk dx < ∞, k→∞ Ω andblowingupexactlyonthesetSφ :={x∈Ω:φ(x)=0},i.e. lim uk(x)=+∞forx∈Sφ and lim uk(x)=−∞forx∈ΩSφ, k→∞ k→∞ thus showing that a result of Adimurthi, Robert and Struwe is sharp. We extend this 2m result to the boundary of Ω and to the case Ω = R open. . Several related problems remain
2018
blow-up; conformal geometry; Liouville equation; Q -curvature; mathematics (all); applied mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
Large blow-up sets for the prescribed Q -curvature equation in the Euclidean space / Hyder, Ali; Iula, Stefano; Martinazzi, Luca. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - 20:2(2018), p. 1750026. [10.1142/S0219199717500262]
File allegati a questo prodotto
File Dimensione Formato  
Hyder_Large-blow-up-sets_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 321.17 kB
Formato Adobe PDF
321.17 kB Adobe PDF   Contatta l'autore
Hyder_postprint_Large-blow-up-sets_2018.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 369.22 kB
Formato Adobe PDF
369.22 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1646198
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact