Let m ≥ 2 be an integer. For any open domain Ω ⊂ R2m, non-positive function φ ∈ C∞(Ω) such that ∆mφ ≡ 0, and bounded sequence (Vk) ⊂ L∞(Ω) we prove the existence of a sequence of functions (uk) ⊂ C2m−1(Ω) solving the Liouville equation of order 2m Z (−∆)muk = Vke2muk in Ω, lim sup e2muk dx < ∞, k→∞ Ω andblowingupexactlyonthesetSφ :={x∈Ω:φ(x)=0},i.e. lim uk(x)=+∞forx∈Sφ and lim uk(x)=−∞forx∈ΩSφ, k→∞ k→∞ thus showing that a result of Adimurthi, Robert and Struwe is sharp. We extend this 2m result to the boundary of Ω and to the case Ω = R open. . Several related problems remain
Large blow-up sets for the prescribed Q -curvature equation in the Euclidean space / Hyder, Ali; Iula, Stefano; Martinazzi, Luca. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - 20:2(2018), p. 1750026. [10.1142/S0219199717500262]
Large blow-up sets for the prescribed Q -curvature equation in the Euclidean space
Martinazzi, Luca
2018
Abstract
Let m ≥ 2 be an integer. For any open domain Ω ⊂ R2m, non-positive function φ ∈ C∞(Ω) such that ∆mφ ≡ 0, and bounded sequence (Vk) ⊂ L∞(Ω) we prove the existence of a sequence of functions (uk) ⊂ C2m−1(Ω) solving the Liouville equation of order 2m Z (−∆)muk = Vke2muk in Ω, lim sup e2muk dx < ∞, k→∞ Ω andblowingupexactlyonthesetSφ :={x∈Ω:φ(x)=0},i.e. lim uk(x)=+∞forx∈Sφ and lim uk(x)=−∞forx∈ΩSφ, k→∞ k→∞ thus showing that a result of Adimurthi, Robert and Struwe is sharp. We extend this 2m result to the boundary of Ω and to the case Ω = R open. . Several related problems remainFile | Dimensione | Formato | |
---|---|---|---|
Hyder_Large-blow-up-sets_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
321.17 kB
Formato
Adobe PDF
|
321.17 kB | Adobe PDF | Contatta l'autore |
Hyder_postprint_Large-blow-up-sets_2018.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
369.22 kB
Formato
Adobe PDF
|
369.22 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.